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A&f&& Bis(tetrathiafulvalenyl)sulphide [(TTF)2S] has been synthesised by reaction of mono- 

lithiated TTF with di(phenylsulphonyl)sulphide, and characterised by cyclic voltammetry and 

single crystal X-ray analysis, which reveals a remarkably close two-dimensional chalcogen 

network in the solid state. The synthesis of (TTF)2Se, using the selenating reagent 

di(phenylsulphonyl)diselenide, is also reported. 

In the quest for new organic metals and organic superconductors, the preparation of covalently 

linked dimers (and higher multiples) of tetrathiafulvalene (TTF) is of burgeoning interest.‘-6 Such 

electron-donor systems should display novel multi-stage redox behaviour with high oxidation states being 

accessible at relatively low potentials (e.g. the tetracation for a dimeric TTF).3 Furthermore, they offer 

unique potential for controlling the stoichiometry, band filling and superstructure in derived charge- 

transfer complexes and ion radical salts, as the juxtaposition of adjacent TTF molecules can be modified by 

the nature of the linking group. From this viewpoint, TTF moieties have been bridged by aromatic 

rings,28387 alkyl chainss~4~5~a and by tellurium1 and phosphorus atoms.6 The use of sulphur and 

selenium as linking atoms was particularly attractive to us. as it is well known that these heteroatoms 

readily participate in intra- and inter-stack interactions in other donor systems, thereby increasing the 

dimensionality and suppressing Peierls distortions. Q Herein we report the one-pot synthesis and solution 

electrochemistry of bis(tetrathiafulvalenyl)sulphide [(TTF)#] (2) and the analogous selenide 

j(TTF)2Se] (3). The X-ray crystal structure of sulphide (2) reveals a remarkable network of very close, 

intermolecular S---S interactions in the solid state. 

Monolithiated TTF species (I)’ o reacted with di(phenylsulphonyl)sulphide (5)’ 1 to afford 

compound (2) which was isolated as an air-stable crystalline solid. 1 2 In a bid to obtain the analogous 

disulphide, (TTF)2S2, di(phenylsulphonyl)disulphide (6),‘3 was reacted with anion (1). However, 
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(2) x = s 

(3) X = Se 

PhS02-S-SO,Ph 
(4) X = Te 

(5) 

PhS02-X-X-SO,Ph 

(6) X = S 
(7) X = Se (8) 

EigUfLL Single crystal X-ray structure of compound (2): (a) view along the b axis; (b) view along the 
a axis showing the network of intermolecular S--S contacts, many of which are shorther than the sum of 
the Van der Waals radii (3.8 A). Distance a = 3.449, b = 3.658, c = 3.497, d = 3.815, e = 3.517, f = 
3.682, g = 3.918 A. The non-bonded interactions are coded as follows: O---O (same plane), O---e (next 
molecule below), O---O (next molecule above). 
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m2. Cyclic voltammogram of compound (2). 
Experimental conditions: compound (2) 
(ca. 1 x 1O-5 mot dm-3), electrolyte Et4N+PFe- 
(ca. 1 x 10-l mol dm-3) in dry dichloromethane 

under nitrogen, 2OOC, sAg/AgCI, Pt 

electrode,scan rate 100 mV s-t. 
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sulphide (2) was the only isolated product (6% yield). In a similar reaction, di(phenylsulphonyl) 

diselenide (7)’ 3 yielded bis(tetrathiafulvalenyl)selenide (3).l 2 

The X-ray crystal structure of (TTF)2S (2) is shown in Figure 1.14 There are two independent 

molecules per unit cell. The molecule is bent about the bridging sulphur atom with a C(6)-S(5)-C(7) 

angle of 100.6(5)O. A view along the b axis (Figure la) shows that each TTF unit in (TTF)2S is slightly 

distorted into a chair conformation (similar to TTF itself17) and that the molecules of (TTF)2S pack in a 

manner reminiscent of a flock of flying seagulls. The stacks are ‘tied’ together by a two-dimensional 

network of intermolecular S---S contacts that are considerably shorter than the Van der Waals distance, 

as shown in Figure 1 b. There is also a weaker three-dimensional interaction in the structure [non-bonded 

interaction g (Figure 1 b)]. Such tight packing of a neutral TTF donor is observed in a very few other 

structures, notable examples being bis(ethylenedithio)-TTF (BEDT-TTF)’ 8 and TTF2Te (4)’ for which 

the closest intermolecular S---S distances are 3.482 and 3.53 A, respectively. 

The solution electrochemistry of (TTF)2S (2) and (TTF)2Se (3) has been studied by cyclic 

voltammetry. The data are identical for both compounds; the cyclic voltammogram of compound (2) is 

shown in Figure 2. Three distinct oxidation waves are observed. The first two oxidations (Et”2 = 0.49 V 

and E2t12 = 0.61 V) are both one-electron processes, and repeated cycling between 0.0 V and 0.7 V 

established that these two waves are reversible. These data are consistent with the sequential formation of 

mono- and di-cationic species TTF-S-TTF+. and TTF+.-S-TTF+,, respectively. Further oxidation to tri- 

and tetra-cationic species, (TTF)2S3+. and (TTF)2S4+, is observed as a single, irreversible, two-electron 

wave at Et’2 = 0.86 V. (Cf. For TTF, El t/2 = 0.34 V and E2tj2 = 0.78 V under identical conditions). The 

separation between the potentials of El “2 and E21’2 for compounds (2) and (3) (AE = 0.12 V) is 

probably due to intra- (or inter-) molecular Coulombic effects. This value is different from that reported 

by Becker et a/ for the telluride analogue (4) (AE = 0.34 V versus AglAgCI, glassy carbon electrode, in 

MeCN-THF),t yet it is very similar to that reported by Bechgaard and coworkers for the 

bis(trimethylTTF) derivative (8) (AE = 0.135 V) in which the TTF moieties are electronically isolated by 

the methylene linkage.3tt9 The bridging chalcogen atom of compounds (2)-(4) could, conceivably, 

electronically couple the two TTF rings to a limited extent. However, recent extended Hiickel calculations 

suggest that through-bond (intramolecular) interactions between TTF units in dimers, (TTF)2X, will be 

very weak, irrespective of the nature of the linking group X. .6 the very similar electrochemical results 

for systems (2) and (8) support these calculations. 

In conclusion, we have synthesised the new bis-TTF derivatives (2) and (3): their multistage 

redox behaviour and the extensive sulphur-sulphur network that exists in the solid state structure of (2) 

are particularly interesting features of these new donors. 
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